Table 1. Petrography of investigated rock samples. All rocks contain a patite, zircon and opaques as minor constituents, S 350 and B 41 secondary calcite. \bar{n} is the average refractive index of the diaplectic quartzes and glasses, see Table 8. % are volume percentages | No. | Rock name | of
shock | Quartz
vol. percentage,
grain size and
refractive index | Feldspar | Biotite | Amphibole | |-------|--|-------------|---|--|-------------------------|------------------------------| | B 10 | quartz dio-
rite gneiss | I | $\begin{array}{lll} 33\% & [0.05-0.5 \text{ mm}] \\ \overline{n} = 1.546 \end{array}$ | 61% oligoclase | 5% | = | | B 51 | granite
gneiss | I | $\frac{32\%}{\overline{n}}[0.05-0.4\;\mathrm{mm}]$ $\overline{n}{=}1.546$ | 63% oligoclase and orthoclase | 5% | _ | | S 289 | granite or
quartz dio-
rite gneiss | II | $\frac{19\%[0.1-\!0.8\mathrm{mm}]}{\overline{n}=1.545}$ | 57% feldspar,
nearly com-
pletely isotropic | 24% with
kinkbands | | | В 36 | granite | I | 33% [0.2 —1.0 mm] | 64% oligoclase
and orthoclase,
the latter with
sanidine optics | 3% | - | | B 151 | diorite | II | $\frac{6\%[0.05-0.4\;\mathrm{mm}]}{\bar{n}=1.536}$ | 47% oligoclase-
andesine. Iso-
tropic twin
lamellae | 12% | 35% with
twin
lamellae | | В1 | quartz dio-
rite gneiss | П | $\begin{array}{l} 33\% \ [0.2 \0.6 \ \mathrm{mm}] \\ \overline{n} = 1.534 \end{array}$ | 62% oligoclase.
Isotropic twin
lamellae | 3% | 1% | | S 350 | granite or
diorite
gneiss | П | $\frac{34\%}{n}[0.2-0.1\mathrm{mm}]$ $\frac{1}{n}=1.533$ | 60% feldspar
partially or
completely
isotropic | 5% biotite and chlorite | _ | | S 349 | quartz dio-
rite gneiss | П | $\frac{22\%\ [0.6\0.2\ \mathrm{mm}]}{\overline{n}=1.529}$ | 55% andesine,
partially or
completely iso-
tropic (see
STÖFFLER, 1967) | 4% with kinkbands | 19% | | В 7 | granite or
quartz dio-
rite gneiss | П | $\begin{array}{l} 37\% \ [0.2\ -0.6\ \mathrm{mm}] \\ \overline{n} = 1.480 \\ \mathrm{partially\ isotropic} \\ \mathrm{and\ transformed} \\ \mathrm{into\ secondary\ clay} \\ \mathrm{minerals} \end{array}$ | 58% feldspar
Partially iso-
tropic, recrystal-
lisation | 4% | - | | В 9 | granite or
quartz dio-
rite gneiss | . II | $\begin{array}{l} 35\% \ [0.2\0.8\ \mathrm{mm}]\\ \overline{n} = 1.479\\ \mathrm{partially\ transformed}\\ \mathrm{into\ secondary\ clay}\\ \mathrm{minerals} \end{array}$ | 60% feldspar,
partially iso-
tropic, recrystal-
lisation | 4% | - | Fig. 2. Planar elements with some single decorations in quartz from sample B 151. Plane polarized light Fig. 3. Non-decorated planar elements in quartz from sample B 7. Crossed nicols found in the sample S 349 (Fig. 4). Some lamellae can be observed only under highest magnifications (oil immersion). All quartz lamellae in the investigated rock samples are symmetrical. Asymmetric lamellae like those reported by Christie, Griggs and Carter (1964) from studies